Building a Raspberry PI Robot Car part 2

In the last post we talked about the electronics, in this post I will talk a bit about the 3D design and printing of the components. I have recently acquired an Ultimaker 3D printer and after quite some experimenting has led me to be able to start designing my own components for the robotcar. In this blog I will try to walk through the design of the robotcar.

Designing the robot

The robot itself is going to consist of 4 main components:
* Casing containing the main electronics (Raspberry PI, power distribution, etc.
* Casing containing the LiPo battery that allows easy battery replacement
* Frame that supports both the battery and electronics casing
* Wheel / suspension mechanism to hold the wheels

Note: The printer has a maximum print size of roughly 20x20x20 cm, so this is the main reason that the casing for the power, electronics and frame are separated from each other.

The software
For the design of the software I started out with TinkerCad which is an online free based 3D editor. However I quickly ran into problems with dimensions which get quickly complex. I switched after this to Autodesk Fusion 360 which is a lot better if it comes to designing technical components, as a hobbyist it is possible to get a free year license.

Wheel / Suspension

The suspension design is a spring based design that will allow some form of flex in the wheel design. The wheel design actually needs to attach to a servo, the wheel itself is attached to the servo. For this I have designed a small bracket suited for my Dynamixel servo’s.

Next I have one beam that will have the spring attached to it and two static beams that connect to the servo holder. The static beams will ensure linear motion of the servo holder and the spring ensures there is dampening of the motions. This looks as following:

For the wheel design I will at some point dedicate a special post as they have caused me a lot of headache. For now I will use some standard wheels that fit onto the servo’s, but ultimately these will become mecanum based wheels.

Designing the frame

The beams used for the suspension are actually part of the base frame. There are going to be 4 wheels, meaning 4 beams that are part of the frame. In order to create sufficient surface for the battery and electronics casing I have connected the beams in a longer frame using connecting pieces. I have design an end piece for the end pieces of the frame and a middle piece to connect the beams all together. This looks as following:

Each of the beams has a length of 12cm, the middle piece is 4cm and the end pieces each 2cm. This gives a total length of 32cm for the robotcar, this is quite long but for the current suspension design it is needed as the suspension beams cannot really be shortened. In the future I might want to shorten the design by redesigning the suspension, however for now its good enough.

Battery & Electronics case

The main battery and electronics case has caused me a lot of problems and many iterations to get right. Every time you print it, there is something that is not entirely right. The tricks has been to measure, measure and measure again all the components you want to fit. I have in the end drawn out a sketch on paper roughly showing the placement of the components. Both the battery and electronics case have to fit in a fixed length of 16cm and 10 cm in width to fit the baseframe. The electronics case contains special accomodation for the Raspberry PI, UBEC power converter, two grove Sensors and the Dynamixel power board:

Note: The electronics casing will have a separate lid which will allow closing up the electronics compartment and allow easy access.

For the battery case its a lot simpler, we just need something to contain the battery. However one of the challenges is that I do not want a lid here, it just needs to be easily replaceable. For this to work there will be two covers on either end of the case that hide the wires but are far enough apart to remove the battery. A not here is that I used round edges instead of sharp 90 degree angles to allow for better printing without support. The round angles allow for a pretty decent print on my ultimaker, and its a lot better than having support material in the case. The case looks as following:

Assembling the robot

Here are a series of pictures of the various parts in stages of assembly

Conclusion

The process of getting to the above design and printed parts has not been easy. I have had for each component many, many iterations before getting to the above. Even now I am still seeing improvement areas, however for now I do think its close to being a functional robot car which was the goal. In the future posts I will start talking a bit about the software and the drive system with the mecanum wheels.

For those wanting to have a look at the 3D parts, I have uploaded them to Github, the idea is in the future to provide a proper manual on how to print and assemble with a bill of materials needed, for now just have a look:
https://github.com/renarj/robo-max/tree/master/3d-parts

Here is a last picture to close with of the first powerup of the robot car:

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s